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We report that asymmetrically interacting ensembles of oscillators follow novel routes to synchrony. These
routes seem to be a characteristic feature of coupling asymmetry. We show that they are unaffected by white
noise except that the entrainment frequencies are shifted. The probability of occurrence of the routes is
determined by phase asymmetry. The identification of these phenomena offers new insight into synchrony
between oscillator ensembles and suggest new ways in which it may be controlled.
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Coupling asymmetry between oscillators is widespread in
real physical and biological systems. Examples include car-
diorespiratory and cardio-� �EEG� interactions �1�, interac-
tions among activator-inhibitor systems �2�, coupled circa-
dian oscillators �3�, and the interactions between ensembles
of oscillators in neuronal dynamics �4,5�. Synchrony can
sometimes be desirable as in, e.g., lasers and Josephson-
junction arrays �7�, or temporal coding and cognition via
brain waves �8� but it can also be dangerous, as in epileptic
seizures �9�, Parkinson’s tremor �10�, or pedestrians on the
Millennium Bridge �11�. Thus the control of synchronization
�6� can often be important. An understanding how synchrony
arises is of course an essential prerequisite for the develop-
ment of control schemes.

In this Brief Report, we report novel routes to synchrony
that arise in asymmetrically interacting ensembles of oscilla-
tors �AIEOs�. They are characteristic of AIEOs and cannot
occur in systems where the interactions are symmetrical. Our
results yield new insights into how synchrony arises and of-
fer possible ways of controlling synchrony between real
AIEOs, e.g., in the brain �8–10�.

The phase dynamical equations of a system of two AIEOs
can be written as �12�

�̇i
�1,2� = �i

�1,2� −
A�1,2�

N�1,2� �
j=1

N�1,2�

sin��i
�1,2� − � j

�1,2� + ��1,2��

−
B

N�2,1� �
j=1

N�2,1�

sin��i
�1,2� − � j

�2,1� + ��3�� . �1�

The interactions are characterized by coupling parameters
A�1,2� and B to quantify, respectively, the interactions within,
and between, the ensembles. The fact that A�1��A�2� �c-
asymmetry hereafter� implies that the oscillators in the en-
sembles are asymmetrically coupled. �i

�1,2� are the phases of
the ith oscillator in each ensemble and N�1,2� refer to the
ensemble sizes; we take N�1�=N�2�=N, with N→�. Phase
asymmetry �p asymmetry hereafter� is introduced by phase
shifts 0���1,2,3��	 /2. The natural oscillator frequencies
�i

�1,2� are assumed to be Lorentzianly distributed as
g���1,2��= 


	 �
2+ ��− �̄�1,2��2�−1 with central frequencies �̄1,2,
and 
 is the half-width at half-maximum. With this charac-
terization, we show that an increase of the coupling strength

between two ensembles that are synchronized separately
does not necessarily result in their mutual phase locking.
Rather, if phase locking occurs, it does so through either one
of two different routes depending on the value of �: in route
I the oscillators in the two ensembles combine and form
clusters; in route II one of the ensembles desynchronizes
while the other remains synchronized.

The model can conveniently be expressed in terms of
�complex-valued, mean-field� order parameters r�1,2�ei��1,2�

= 1
N� j=1

N ei�j
�1,2�

. Here ��1,2��t� are the average phases of the
oscillators in the respective ensembles and r�1,2��t� provide
measures of the coherence of each oscillator ensemble which
varies from 0 to 1. When r�1,2��1 the corresponding en-
semble is synchronized in phase �microscopic synchroniza-
tion� and when ��=��1�−��2�� constant the ensembles are
mutually locked in phase �macroscopic synchronization�.
With these definitions, Eq. �1� becomes

�̇i
�1,2� = �i

�1,2� − A�1,2�r�1,2� sin��i
�1,2� − ��1,2� + ��

− Br�2,1� sin��i
�1,2� − ��2,1� + �� , �2�

where for simplicity we have considered the particular case
��1,2,3�=�. In the limit N→�, a density function can be de-
fined as ��1,2��� , t ,��d�d� which describes the number of
oscillators with natural frequencies within �� ,�+d�� and
with phases within �� ,�+d�� at time t. For fixed � the dis-
tribution ��1,2��� , t ,�� obeys the evolution equation

���1,2� /�t=−����1,2��̇�1,2�� /��. The function ��1,2��� , t ,�� is
real and 2	 periodic in �, so it can be expressed as a Fourier
series in �

��1,2���,t,�� = �
l=−�

�

�l
�1,2���,t�eil�

=
1

2	
+ �1

�1,2�ei� + c.c. + 
��,t,�� ,

where c.c. is the complex conjugate of the preceding term
and 
�� , t ,�� denotes the second and higher harmonics. Sub-
stituting ��1,2��� , t ,�� into the evolution equation, we get the
following linearized equation for �1;
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�̇1
�1,2� + i��1

�1,2� =
ei�

2
�A�1,2���1

�1,2�� + B��1
�2,1��� , �3�

where the Fourier components for 	l	�2 are neglected since
l= �1 are the only nontrivial unstable modes and �0
=1 /2	 is the trivial solution corresponding to incoherence.
�¯� represents the average over the frequencies ��1,2�

weighted by the Lorentzian distribution g���1,2��. The eigen-
values obtained from the characteristic equation of Eq. �3�
are

�� = 
− 
 +
�

4
ei� �

1

2
�p2 + q2�1/4ei1/2� − i�̄ , p � 0,

− 
 +
�

4
ei� �

i

2
�p2 + q2�1/4ei1/2� − i�̄ , p � 0, �

�4�

where �=A�1�+A�2�, �= � 1
4 Â2+B2�, Â= �A�1�−A�2��, �

=tan−1� q
p �, ��= �̄�1�− �̄�2�, �̄= ��̄�1�+ �̄�2�� /2, p=� cos�2��

+ Â�� sin �−��2, and q=� sin�2��− Â�� cos �. As a sig-
nature of synchronization, we take the condition Re����
�0 for analytic treatment. For the numerical experiment, we
set r�1,2��0.7 for microscopic synchronization in the corre-
sponding ensembles and a constant �� for macroscopic syn-
chronization as the conditions. We take N=1000 in each en-
semble and the equations are solved using a fourth-order
Runge-Kutta routine. The initial phases of the oscillators are
assumed to be equally distributed in �0,2	�.

One might intuitively anticipate the possibility of four dis-
tinct dynamical regimes: no synchronization �NS�; global
synchronization, in which the oscillators of both ensembles
are entrained to the same frequency �S1�; synchronization
within one ensemble but not the other �S2�; synchronization
within both ensembles, separately and independently, with
two entrainment frequencies �D2�. In what follows, we show
that this is indeed the case and, furthermore, that there is a
global regime in which the two ensembles behave as one, but
oscillators within each ensemble are entrained at either one
of two distinct entrainment frequencies �D1�. Regions S2 and
D1 cannot occur when c asymmetry is absent �13� �see Fig.
1�.

For the case �=0, when p�0, in region S1, the incoher-
ent �steady� state becomes unstable via a single Hopf bifur-
cation and the ensembles entrain to a single frequency �+.
With further decrease of 
 below the 
c− line in region D1, a
new entrainment frequency emerges through a second Hopf
bifurcation. In this region, the oscillators from the two en-
sembles combine and form two clusters �macroscopic clus-
tering� oscillating with two frequencies ��=−Im����
= � �1 /2��p2+q2�1/4sin� 1

2��+ �̄. 
c� are obtained by impos-
ing the condition Re����=0. Thus in this region the order
parameters either fluctuate in a quasiperiodic manner or have
complicated dynamics �see Fig. 2�. This is because each en-
semble has two clusters oscillating with different frequencies
�see Figs. 2�a� and 3� �14�. The presence of two entrainment
frequencies can be seen by looking at the frequencies into
which all the individual oscillators are grouped as shown in
Fig. 3. The macroscopic clustering that occurs in this case is

quite different from formation of clusters in a single en-
semble �12,15�—here the oscillators in two different en-
sembles combine and form clusters. The occurrence of this
phenomenon provides new insight into the control of syn-
chrony in realistic situations where there is asymmetry, like
neural networks where neurons from one ensemble �e.g., cor-
tex� tend to synchronize with those in the other ensemble
�e.g., thalamus� thus giving rise to creating desirable or un-
desirable �e.g., epileptic seizures� effects. In the absence of
coupling asymmetry, these phenomena do not exist. Travers-
ing the line I-II of Fig. 1 demonstrates route I to phase lock-
ing of the ensembles. As we increase B, the oscillators in the
ensembles pass from the dynamical state of microscopic syn-
chronization �D2� through macroscopic clustering to macro-
scopic synchronization or phase locking of the ensembles.
Note that when A�1�=A�2� or ��=0 only one entrainment
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FIG. 1. �B-
� bifurcation diagram for �=0, ��=1. The differ-
ent synchronization regimes are described in the text. The boundary
between regimes NS and S/D represents 
c+. The *s represent the
numerical bifurcation boundaries; �left� A�1�=A�2�=1, �right� A�1�

=1.2, A�2�=1. Insets show the frequency distributions �also obtained
numerically� for the indicated regions; their ordinate axes represent
oscillator counts in thousands. Note that the occurrence of perfect
synchronization with 2000 �left� and 1000 �right� oscillator groups
will not occur throughout all of each indicated region.
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FIG. 2. Numerical plot of coherence parameters r�1� �grey�, r�2�

�black� and phase difference �� as a function of time. Here �a� B
=1, �=0.23 and �b� B=1, �=0.47. �a� and �b� correspond to re-
gions D1 and D2 of Fig. 4�b� for the same values of parameters as
traveling along the line I-II. Note that the order parameters display
no synchronization in the D1 region.
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frequency exists below 
c− and therefore this sequence does
not occur �due to the absence of region D1�. While traversing
the line III-IV of Fig. 1 the ensembles adopt route II to phase
locking in which it is the macroscopic clustering that does
not occur.

When p�0, corresponding to regions S2 and D2 in Fig.
1, the dynamics is the same as above except that the values
of critical 
 and synchronization frequencies differ, as can be
calculated from Eq. �4�. In region S2, microscopic synchro-
nization can occur in either one of the ensembles, depending
upon whether A�1� or A�2� is greater; in Fig. 1, since A�1�

�A�2�, synchronization occurs in the first ensemble with the
second ensemble remaining incoherent. Note that, on in-
creasing B while in region S2, the condition p�0 is violated
and the ensembles enter into the phase-locked region S1. In
region D2, the ensembles synchronize separately to two
locking frequencies �unlike in region D1 where the en-
sembles combine�. The corresponding �B-
� bifurcation dia-
gram for the case A�1�=A�2� is plotted in Fig. 1 �left� to show
the difference between these two cases. The region D repre-
sents microscopic synchronization which occurs through a
degenerate Hopf bifurcation �similar to D2� and S represents
macroscopic synchronization through a single Hopf bifurca-
tion �similar to S1�. The regions S2 and D1 cannot arise for
this case. Hence the ensembles cannot follow either route I
or II to synchrony but can only pass from the dynamical
states of microscopic synchrony to macroscopic synchrony.

For the case ��0, regions D1 and S1 shrink as � in-
creases, whereas S2 expands, as shown in Fig. 4. This means
that p asymmetry reduces the probability of macroscopic
synchronization �reduced S1 and D1 regions in Fig. 4� and
mostly allows only microscopic synchronization of one or
both of the ensembles. For a given set of parameters, there
exists a value of � below which the condition p�0 is satis-
fied and above which p�0 is satisfied. As a result, when �
�� j the macroscopic synchrony breaks and the system en-
ters the microscopically synchronized state. Thus as one
travels from S1 �D1� to S2 �D2� across � j the combined
synchrony with single �double� frequency breaks between
the ensembles and independent synchronization with single
�double� frequency regime appears. Region S2, unlike in Fig.
1, embraces two states �i� synchronization in ensemble 1
with ensemble 2 incoherent and �ii� synchronization in en-
semble 2 with ensemble 1 incoherent, but does distinguish

between them. Further, there is a critical value of �=�c
above which the collective oscillations disappear and the in-
coherent state becomes stabilized �see Figs. 4 and 5�.

Real physical systems are of course subject to noise �ran-
dom fluctuations, of either internal or external origin�, so we
now consider how the above analysis will be modified as a
result. Adding 
i

�1,2� to the RHS of Eq. �1�, where 
i
�1,2� are

independent Gaussian white noises with �
i
�1,2��t��=0 and

�
i
�1,2��t�
 j

�1 , 2���t��=2K�1,2���t− t���ij and K�1,2� are the noise
intensities, the eigenvalues of the linearized equation then
take the form

�� = 
− K̄ − 
 +
�

4
ei� �

1

2
�p2 + q2�1/4ei1/2� − i�̄ , p � 0,

− K̄ − 
 +
�

4
ei� �

i

2
�p2 + q2�1/4ei1/2� − i�̄ , p � 0,�

�5�

where K̄= �K�1�+K�2��
2 , �K=K�1�−K�2�, p=� cos�2��

+ Â��� sin �+�K cos����−��2+�K2, and q=� sin�2��
− Â�� cos �− Â�K sin �+2���K. For simplicity, if we
consider K�1�=K�2�=K, one can then replace 
 in Eq. �4� by

+K. Thus from Eq. �5� it is evident that the dynamics and
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FIG. 3. Histograms of the oscillator frequencies in the D1 re-
gion. Left: First ensemble, right: Second ensemble, for the corre-
sponding parameter values in Fig. 2�a�. Note that the first frequency
component in both the ensembles have two indistinguishably differ-
ent subcomponents which may be considered as one. This occurs
due to the discrepancy between numerics and analytics.
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hence the new route to synchrony are unaffected by the pres-
ence of white noise. Consequently, for increasing noise in-
tensity, the incoherent state becomes unstable for larger val-
ues of the critical parameters. When K�1��K�2� the
entrainment frequency depends on �K �shown in Fig. 6�. On
increasing �K �K�1��K�2��, the microscopic synchronization
of ensemble 1 is destroyed.

In summary, we have found new routes to synchrony be-
tween two AIEOs. We have also established that the effect of
white noise is simply to alter the critical values of the pa-
rameters that control bifurcation, and to change the entrain-
ment frequencies, but without otherwise affecting these
routes to synchrony. These results pave the way towards
practical methods of controlling synchrony between real
AIEOs, e.g., in the brain �8–10�.
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